Теория большого взрыва кто сформулировал. Большой взрыв и краткая история вселенной

Согласно данной теории Вселенная появилась в виде горячего сгустка сверхплотной материи, после чего она начала расширяться и остывать. На самом первом этапе эволюции Вселенная находилась в сверхплотном состоянии и представляла собой -глюонную плазму. Если протоны и нейтроны сталкивались и образовывали более тяжелые ядра, время их существования было ничтожно мало. При следующем столкновении с какой-либо быстрой частицей они сразу же распадались на элементарные компоненты.

Примерно 1 миллиард лет назад началось формирование галактик, в тот момент Вселенная стала отдаленно напоминать то, что мы можем увидеть сейчас. Через 300 тысяч лет после Большого взрыва она настолько остыла, что электроны стали прочно удерживаться ядрами, вследствие чего появились стабильные атомы, которые не распадались сразу же после соударения с другим ядром.

Образование частиц

Образование частиц началось в результате расширения Вселенной. Ее дальнейшее охлаждение привело к образованию ядер гелия, которое произошло в результате первичного нуклеосинтеза. С момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла, а энергия соударения уменьшалась настолько, что частицы стали образовывать устойчивые ядра. В первые три минуты Вселенная представляла собой раскаленное море элементарных частиц.

Первичное образование ядер продолжалось очень недолго, после первых трех минут частицы отдались друг от друга так, что столкновения между ними стали крайне редки. В этот короткий период первичного нуклеосинтеза появился дейтерий - тяжелый изотоп водорода, ядро которого содержит один протон и один . Одновременно с дейтерием образовались: гелий-3, гелий-4 и незначительное количество лития-7. Все более тяжелые элементы появились на стадии формирования звезд.

После рождения Вселенной

Примерно через одну стотысячную долю секунды от начала зарождения Вселенной кварки соединились в элементарные частицы. С этого момента Вселенная стала остывающим морем элементарных частиц. Вслед за этим начался процесс, который называют великим объединением фундаментальным сил. Тогда во Вселенной присутствовали энергии, соответствующие максимальным энергиям, которые могут быть получены в современных ускорителях. После началось скачкообразное инфляционное расширение, одновременно с ним исчезли античастицы.

У теории Большого взрыва в нынешнем десятилетии появился сильный конкурент — циклическая теория.

Теория Большого взрыва пользуется доверием абсолютного большинства ученых, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет очень многое и ни в чем не противоречит экспериментальным данным. Однако недавно у нее появился конкурент в лице новой, циклической теории, основы которой разработали двое физиков экстра-класса – директор Института теоретической науки Принстонского университета Пол Стейнхардт и лауреат Максвелловской медали и престижной международной премии TED Нил Тьюрок, директор канадского Института перспективных исследований в области теоретической физики (Perimeter Institute for Theoretical Physics). С помощью профессора Стейнхардта «Популярная механика» попыталась рассказать о циклической теории и о причинах ее появления.

Алексей Левин

Название этой статьи может показаться не слишком умной шуткой. Согласно общепринятой космологической концепции, теории Большого взрыва, наша Вселенная возникла из экстремального состояния физического вакуума, порожденного квантовой флуктуацией. В этом состоянии не существовало ни времени, ни пространства (или они были спутаны в пространственно-временную пену), а все фундаментальные физические взаимодействия были слиты воедино. Позже они разделились и обрели самостоятельное бытие — сначала гравитация, затем сильное взаимодействие, а уже потом — слабое и электромагнитное.

Момент, предшествовавший этим переменам, принято обозначать как нулевое время, t=0, однако это чистая условность, дань математическому формализму. Согласно стандартной теории, непрерывное течение времени началось лишь после того, как сила тяготения обрела независимость. Этому моменту обычно приписывают величину t=10 -43 с (точнее, 5,4х10 -44 с), которую называют планковским временем. Современные физические теории просто не в состоянии осмысленно работать с более короткими промежутками времени (считается, что для этого нужна квантовая теория гравитации, которая пока не создана). В контексте традиционной космологии нет смысла рассуждать о том, что происходило до начального момента времени, поскольку времени в нашем понимании тогда просто не существовало.


Теория Большого взрыва пользуется доверием абсолютного большинства ученых, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет очень многое и ни в чем не противоречит экспериментальным данным. Однако недавно у нее появился конкурент в лице новой, циклической теории, основы которой разработали двое физиков экстра-класса — директор Института теоретической науки Принстонского университета Пол Стейнхардт и лауреат Максвелловской медали и престижной международной премии TED Нил Тьюрок, директор канадского Института перспективных исследований в области теоретической физики (Perimeter Institute for Theoretical Physics). С помощью профессора Стейнхардта «Популярная механика» попыталась рассказать о циклической теории и о причинах ее появления.

Инфляционная космология

Непременной частью стандартной космологической теории служит концепция инфляции (см. врезку). После окончания инфляции в свои права вступило тяготение, и Вселенная продолжила расширяться, но уже с уменьшающейся скоростью. Такая эволюция растянулась на 9 млрд лет, после чего в дело вступило еще одно антигравитационное поле еще неизвестной природы, которое именуют темной энергией. Оно опять вывело Вселенную в режим экспоненциального расширения, который вроде бы должен сохраниться и в будущие времена. Следует отметить, что эти выводы базируются на астрофизических открытиях, сделанных в конце прошлого века, почти через 20 лет после появления инфляционной космологии.

Впервые инфляционная интерпретация Большого взрыва была предложена около 30 лет назад и с тех пор многократно шлифовалась. Эта теория позволила разрешить несколько фундаментальных проблем, с которыми не справилась предшествующая космология. Например, она объяснила, почему мы живем во Вселенной с плоской евклидовой геометрией — в соответствии с классическими уравнениями Фридмана, именно такой она и должна сделаться при экспоненциальном расширении. Инфляционная теория объяснила, почему космическая материя обладает зернистостью в масштабах, не превышающих сотен миллионов световых лет, а на больших дистанциях распределена равномерно. Она также дала истолкование неудачи любых попыток обнаружить магнитные монополи, очень массивные частицы с одиночным магнитным полюсом, которые, как считается, в изобилии рождались перед началом инфляции (инфляция так растянула космическое пространство, что первоначально высокая плотность монополей сократилась почти до нуля, и поэтому наши приборы не могут их обнаружить).


Вскоре после появления инфляционной модели несколько теоретиков поняли, что ее внутренняя логика не противоречит идее перманентного множественного рождения все новых и новых вселенных. В самом деле, квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать в любом количестве, если для этого имеются подходящие условия. Не исключено, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода, также способную к космологическому «деторождению». Существуют модели, в которых такие дочерние вселенные возникают непрерывно, отпочковываются от своих родительниц и находят свое собственное место. При этом вовсе не обязательно, что в таких мирах устанавливаются одни и те же физические законы. Все эти миры «вложены» в единый пространственно-временной континуум, но разнесены в нем настолько, что никак не ощущают присутствия друг друга. В общем, концепция инфляции позволяет- более того, вынуждает!- считать, что в исполинском мегакосмосе существует множество изолированных друг от друга вселенных с различным устройством.

Альтернатива

Физики-теоретики любят придумывать альтернативы даже самым общепринятым теориям. Появились конкуренты и у инфляционной модели Большого взрыва. Они не получили широкой поддержки, но имели и имеют своих последователей. Теория Стейнхардта и Тьюрока среди них не первая и наверняка не последняя. Однако на сегодняшний день она разработана детальней остальных и лучше объясняет наблюдаемые свойства нашего мира. Она имеет несколько версий, из которых одни базируются на теории квантовых струн и многомерных пространств, а другие полагаются на традиционную квантовую теорию поля. Первый подход дает более наглядные картинки космологических процессов, так что на нем и остановимся.


Самый продвинутый вариант теории струн известен как М-теория. Она утверждает, что физический мир имеет 11 измерений — десять пространственных и одно временное. В нем плавают пространства меньших размерностей, так называемые браны. Наша Вселенная — просто одна из таких бран, обладающая тремя пространственными измерениями. Ее заполняют различные квантовые частицы (электроны, кварки, фотоны и т. д.), которые на самом деле явлются разомкнутыми вибрирующими струнами с единственным пространственным измерением — длиной. Концы каждой струны намертво закреплены внутри трехмерной браны, и покинуть брану струна не может. Но есть и замкнутые струны, которые могут мигрировать за пределы бран — это гравитоны, кванты поля тяготения.

Как же циклическая теория объясняет прошлое и будущее мироздания? Начнем с нынешней эпохи. Первое место сейчас принадлежит темной энергии, которая заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры. В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. В течение следующего триллиона лет размеры Вселенной удвоятся около ста раз и она превратится в практически пустой мир, полностью лишенный материальных структур. Рядом с нами находится еще одна трехмерная брана, отделенная от нас на ничтожное расстояние в четвертом измерении, и она тоже претерпевает аналогичное экспоненциальное растяжение и уплощение. Все это время дистанция между бранами практически не меняется.


А потом эти параллельные браны начинают сближаться. Их толкает друг к другу силовое поле, энергия которого зависит от расстояния между бранами. Сейчас плотность энергии такого поля положительна, поэтому пространство обеих бран расширяется по экспоненте, — следовательно, именно это поле и обеспечивает эффект, который объясняют наличием темной энергии! Однако этот параметр постепенно уменьшается и через триллион лет упадет до нуля. Обе браны все равно продолжат расширяться, но уже не по экспоненте, а в очень медленном темпе. Следовательно, в нашем мире плотность частиц и излучения так и останется почти что нулевой, а геометрия — плоской.

Новый цикл

Но окончание старой истории — лишь прелюдия к очередному циклу. Браны перемещаются навстречу друг другу и в конце концов сталкиваются. На этой стадии плотность энергии межбранового поля опускается ниже нуля, и оно начинает действовать наподобие гравитации (напомню, что у тяготения потенциальная энергия отрицательна!). Когда браны оказываются совсем близко, межбрановое поле начинает усиливать квантовые флуктуации в каждой точке нашего мира и преобразует их в макроскопические деформации пространственной геометрии (например, за миллионную долю секунды до столкновения расчетный размер таких деформаций достигает нескольких метров). После столкновения именно в этих зонах выделяется львиная доля высвобождаемой при ударе кинетической энергии. В итоге именно там возникает больше всего горячей плазмы с температурой порядка 1023 градусов. Именно эти области становятся локальными узлами тяготения и превращаются в зародыши будущих галактик.

Такое столкновение заменяет Большой взрыв инфляционной космологии. Очень важно, что вся возникшая заново материя с положительной энергией появляется за счет накопленной отрицательной энергии межбранового поля, поэтому закон сохранения энергии не нарушается.


Инфляционная теория допускает образование множественных дочерних вселенных, которые непрерывно отпочковываются от существующих.

А как ведет себя такое поле в этот решающий момент? До столкновения плотность его энергии достигает минимума (причем отрицательного), затем начинает возрастать, а при столкновении становится нулевой. Затем браны отталкиваются друг от друга и начинают расходиться. Плотность межбрановой энергии проходит обратную эволюцию — опять делается отрицательной, нулевой, положительной. Обогащенная материей и излучением брана сначала расширяется с падающей скоростью под тормозящим воздействием собственного тяготения, а потом вновь переходит к экспоненциальному расширению. Новый цикл заканчивается подобно прежнему — и так до бесконечности. Циклы, предшествующие нашему, происходили и в прошлом — в этой модели время непрерывно, поэтому прошлое существует и за пределами 13,7 млрд лет, прошедших после последнего обогащения нашей браны материей и излучением! Было ли у них вообще какое-то начало, теория умалчивает.

Циклическая теория по‑новому объясняет свойства нашего мира. Он обладает плоской геометрией, поскольку к концу каждого цикла непомерно растягивается и лишь немного деформируется перед началом нового цикла. Квантовые флуктуации, которые становятся предшественниками галактик, возникают хаотически, но в среднем равномерно — поэтому космическое пространство заполнено сгустками материи, но на очень больших дистанциях вполне однородно. Мы не можем обнаружить магнитные монополи просто потому, что максимальная температура новорожденной плазмы не превышала 10 23 К, а для возникновения таких частиц потребны много большие энергии — порядка 10 27 К.


Момент Большого Взрыва — это столкновение бран. Выделяется огромное количество энергии, браны разлетаются, происходит замедляющееся расширение, вещество и излучение остывают, образуются галактики. Расширение вновь ускоряется за счет положительной плотности межбрановой энергии, а затем замедляется, геометрия становится плоской. Браны притягиваются друг к другу, перед столкновением квантовые флуктуации усиливаются и преобразуются в деформации пространственной геометрии, которые в будущем станут зародышами галактик. Происходит столкновение, и цикл начинается сначала.

Мир без начала и конца

Циклическая теория существует в нескольких версиях, как и теория инфляции. Однако, по словам Пола Стейнхардта, различия между ними чисто технические и интересны лишь специалистам, общая концепция же остается неизменной: «Во-первых, в нашей теории нет никакого момента начала мира, никакой сингулярности. Есть периодические фазы интенсивного рождения вещества и излучения, каждую из которых при желании можно называть Большим взрывом. Но любая из этих фаз знаменует не возникновение новой вселенной, а лишь переход от одного цикла к другому. И пространство, и время существуют и до, и после любого из этих катаклизмов. Поэтому вполне закономерно спросить, каким было положение дел за 10 млрд лет до последнего Большого взрыва, от которого отсчитывают историю мироздания.

Второе ключевое отличие — природа и роль темной энергии. Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений. А наш подход гораздо лучше скреплен внутренней логикой, поскольку темная энергия у нас присутствует изначально и именно она обеспечивает чередование космологических циклов». Впрочем, как отмечает Пол Стейнхардт, есть у циклической теории и слабые места: «Нам пока не удалось убедительно описать процесс столкновения и отскока параллельных бран, имеющий место в начале каждого цикла. Прочие аспекты циклической теории разработаны куда лучше, а здесь предстоит устранить еще немало неясностей».


Проверка практикой

Но даже самые красивые теоретические модели нуждаются в опытной проверке. Можно ли подтвердить или опровергнуть циклическую космологию с помощью наблюдений? «Обе теории, и инфляционная, и циклическая, предсказывают существование реликтовых гравитационных волн, — объясняет Пол Стейнхардт. — В первом случае они возникают из первичных квантовых флуктуаций, которые в ходе инфляции размазываются по пространству и порождают периодические колебания его геометрии, — а это, согласно общей теории относительности, и есть волны тяготения. В нашем сценарии первопричиной таких волн также служат квантовые флуктуации — те самые, что усиливаются при столкновении бран. Вычисления показали, что каждый механизм порождает волны, обладающие специфическим спектром и специфической поляризацией. Эти волны обязаны были оставить отпечатки на космическом микроволновом излучении, которое служит бесценным источником сведений о раннем космосе. Пока такие следы обнаружить не удалось, но, скорее всего, это будет сделано в течение ближайшего десятилетия. Кроме того, физики уже думают о прямой регистрации реликтовых гравитационных волн с помощью космических аппаратов, которые появятся через два-три десятка лет».

Радикальная альтернатива

1980-х годах профессор Стейнхардт внес немалый вклад в разработку стандартной теории Большого Взрыва. Однако это ничуть не помешало ему искать радикальную альтернативу теории, в которую вложено столько труда. Как рассказал «Популярной механике» сам Пол Стейнхардт, гипотеза инфляции действительно раскрывает много космологических загадок, но это не означает, что нет смысла искать и другие объяснения: «Сначала мне было просто интересно попробовать разобраться в основных свойствах нашего мира, не прибегая к инфляции. Позднее, когда я углубился в эту проблематику, я убедился, что инфляционная теория совсем не так совершенна, как утверждают ее сторонники. Когда инфляционная космология только создавалась, мы надеялись, что она объяснит переход от первоначального хаотического состояния материи к нынешней упорядоченной Вселенной. Она это и сделала — но пошла много дальше. Внутренняя логика теории потребовала признать, что инфляция постоянно творит бесконечное число миров. В этом не было бы ничего страшного, если бы их физическое устройство копировало наше собственное, но этого как раз и не получается. Вот, скажем, с помощью инфляционной гипотезы удалось объяснить, почему мы живем в плоском евклидовом мире, но ведь большинство других вселенных заведомо не будет обладать такой же геометрией. Короче говоря, мы строили теорию для объяснения своего собственного мира, а она вышла из-под контроля и породила бесконечное разнообразие экзотических миров. Такое положение дел перестало меня устраивать. К тому же стандартная теория не способна объяснить природу более раннего состояния, предшествовавшего эспоненциальному расширению. В этом смысле она так же неполна, как и доинфляционная космология. Наконец, она не в состоянии ничего сказать о природе темной энергии, которая уже 5 миллиардов лет управляет расширением нашей Вселенной».

Еще одно различие, по словам профессора Стейнхардта, состоит в распределении температур фонового микроволнового излучения: «Это излучение, приходящее из разных участков небосвода, не вполне однородно по температуре, в нем есть более и менее нагретые зоны. На том уровне точности измерений, который обеспечивает современная аппаратура, количество горячих и холодных зон примерно одинаково, что совпадает с выводами обеих теорий — и инфляционной, и циклической. Однако эти теории предсказывают более тонкие различия между зонами. В принципе, их сможет выявить запущенная в прошлом году европейская космическая обсерватория "Планк" и другие новейшие космические аппараты. Я надеюсь, что результаты этих экспериментов помогут сделать выбор между инфляционной и циклической теориями. Но может случиться и так, что ситуация останется неопределенной и ни одна из теорий не получит однозначной экспериментальной поддержки. Ну что ж, тогда придется придумать что-нибудь новое».

Большой Взрыв. Так называется теория, вернее одна из теорий, возникновения или, если угодно, сотворения Вселенной. Название, пожалуй, слишком несерьезное для столь устрашающего и вызывающего благоговейный трепет события. В особенности устрашающего, если когда – нибудь вы задавали себе очень трудные вопросы о мироздании.

Например, если Вселенная - это все то, что есть, то каким образом это началось? И что было до этого? Если пространство не бесконечно, то что за пределами его? И в чем собственно должно помещаться это нечто? Как можно понять слово «бесконечно»?

Эти вещи трудны для понимания. Более того, когда об этом начинаешь задумываться, охватывает жуткое ощущение чего-то величественно – ужасного. Но вопросы о мироздании - это одни из самых главных вопросов, которые задает себе человечество на протяжение своей истории.

Материалы по теме:

Звезды и созвездия

Что послужило началом существования Вселенной?

Большинство ученых убеждено, что начало существованию Вселенной положено грандиозным большим взрывом вещества, который произошел около 15 миллиардов лет назад. Многие годы большинство ученых разделяло гипотезу о том, что начало Вселенной было положено грандиозным взрывом, который ученые шутливо окрестили «Большой Взрыв». По их мнению, вся материя и все пространство, которое сейчас представлено миллиардами и миллионами галактик и звезд, 15 миллиардов лет назад умещалось в мизерном пространстве размером не превышающем нескольких слов в этом предложении.

Как образовывалась Вселенная?

Ученые полагают, что 15 миллиардов лет назад этот маленький объем взорвался мельчайшими, меньшими чем атомы, частицами, положив начало существованию Вселенной. Первоначально она представляла собой туманность из мелких частиц. Позже при соединении этих частиц образовались атомы. Из атомов же сформировались звездные галактики . Со времени этого Большого Взрыва Вселенная продолжает расширяться, как раздуваемый воздушный шар.

Материалы по теме:

Интересные факты о звездах

Сомнения в теории Большого Взрыва

Но за последние несколько лет ученые, занимающиеся изучением структуры Вселенной, совершили несколько неожиданных открытий. Некоторые из них ставят под сомнение теорию Большого Взрыва. Что поделаешь, наш мир не всегда соответствует нашим удобным представлениям о нем.

Распределение вещества при взрыве

Одна проблема заключается в том способе, которым материя распределена по Вселенной. Когда взрывается какой-либо предмет, то его содержимое разлетается равномерно во всех направлениях. Другими словами, если материя в начале была спрессована в малом объеме, а затем взорвалась, то вещество должно было равномерно распределиться по пространству Вселенной.

Реальность, однако, сильно отличается от ожидаемых представлений. Мы живем в весьма неравномерно заполненной Вселенной. При взгляде в космос взору предстают отдельные удаленные друг от друга сгустки материи. Громадные галактики разбросаны там и сям по космическому пространству. Между

Даже современные ученые не могут с точностью сказать, что было во Вселенной до Большого взрыва. Существует несколько гипотез, приоткрывающих завесу тайны над одним из самых сложных вопросов мироздания.

Происхождение материального мира

До XX века существовало только две Сторонники религиозной точки зрения считали, что мир был создан богом. Ученые, наоборот, отказывались признавать рукотворность Вселенной. Физики и астрономы были сторонниками идеи о том, что космос существовал всегда, мир был статичен и все останется таким же, как миллиарды лет назад.

Однако ускорившийся научный прогресс на рубеже веков привел к тому, что у исследователей появились возможности для изучения внеземных просторов. Некоторые из них первыми попытались ответить на вопрос, что было во Вселенной до Большого взрыва.

Исследования Хаббла

XX столетие разрушило многие теории прошлых эпох. На освободившемся месте появились новые гипотезы, объяснившие доселе непонятные тайны. Все началось с того, что ученые установили факт расширения Вселенной. Сделано это было Эдвином Хабблом. Он обнаружил, что далекие галактики отличаются по своему свету от тех космических скоплений, которые находились ближе к Земле. Открытие этой закономерности легло в основу закона расширения Эдвина Хаббла.

Большой взрыв и происхождение Вселенной были изучены, когда стало ясно, что все галактики «убегают» от наблюдателя, в какой бы точке он ни был. Как это можно было объяснить? Раз галактики движутся, значит, их толкает вперед некая энергия. Кроме того, физики вычислили, что все миры когда-то находились в одной точке. Из-за некоего толчка они начали двигаться во все стороны с невообразимой скоростью.

Это явление и получило название «Большой взрыв». И происхождение Вселенной было объяснено именно с помощью теории об этом давнем событии. Когда оно случилось? Физики определили скорость движения галактик и вывели формулу, по которой они вычислили, когда произошел первоначальный «толчок». Точных цифр никто назвать не возьмется, но приблизительно это явление имело место около 15 миллиардов лет назад.

Появление теории Большого взрыва

Тот факт, что все галактики являются источниками света, означает, что при Большом взрыве выделилось огромное количество энергии. Именно она породила ту самую яркость, которую миры теряют по ходу своего отдаления от эпицентра произошедшего. Теория Большого взрыва впервые была доказана американскими астрономами Робертом Вильсоном и Арно Пензиасом. Они обнаружили электромагнитное реликтовое излучение, температура которого равнялась трем градусам по кельвиновской шкале (то есть -270 по Цельсию). Эта находка подтвердила идею о том, что сначала Вселенная была крайне горячей.

Теория Большого взрыва ответила на многие вопросы, сформулированные в XIX веке. Однако теперь появились новые. Например, что было во Вселенной до Большого взрыва? Почему она так однородна, в то время как при таком огромном выбросе энергии вещество должно разлететься во все стороны неравномерно? Открытия Вильсона и Арно поставили под сомнения классическую Евклидову геометрию, так как было доказано, что пространство имеет нулевую кривизну.

Инфляционная теория

Новые поставленные вопросы показывали, что современная теория возникновения мира отрывочна и неполна. Однако долгое время казалось, что продвинуться дальше открытого в 60-е годы будет невозможно. И только совсем недавние исследования ученых позволили сформулировать новый важный принцип для теоретической физики. Это было явление сверхбыстрого инфляционного расширения Вселенной. Оно было изучено и описано с помощью квантовой теории поля и общей теории относительности Эйнштейна.

Так что было во Вселенной до Большого взрыва? Современная наука называет этот период «инфляцией». Вначале было только поле, которое заполняло все воображаемое пространство. Его можно сравнить со снежком, пущенным вниз по склону снежной горы. Ком будет катиться вниз и увеличиваться в размерах. Точно так же поле из-за случайных колебаний на протяжении невообразимого времени меняло свою структуру.

Когда образовалась однородная конфигурация, произошла реакция. В ней и заключаются самые большие загадки Вселенной. Что было до Большого взрыва? Инфляционное поле, которое совсем не походило на нынешнюю материю. После реакции начался рост Вселенной. Если продолжить аналогию со снежным комом, то вслед за первым из них вниз покатились другие снежки, также увеличивавшиеся в размерах. Момент Большого взрыва в этой системе можно сравнить с той секундой, когда огромная глыба рухнула в пропасть и, наконец, столкнулась с землей. В это мгновение выделилось колоссальное количество энергии. Она не может иссякнуть до сих пор. Именно за счет продолжения реакции от взрыва наша Вселенная растет и сегодня.

Материя и поле

Сейчас Вселенная состоит из невообразимого количества звезд и других космических тел. Эта совокупность материи источает огромную энергию, что противоречит физическому закону сохранения энергии. О чем он гласит? Суть этого принципа сводится к тому, что на протяжении бесконечного времени сумма энергии в системе остается неизменной. Но как это может сочетаться с нашей Вселенной, которая продолжает расширяться?

Инфляционная теория смогла ответить на этот вопрос. Крайне редко разгадываются подобные загадки Вселенной. Что было до Большого взрыва? Инфляционное поле. После возникновения мира на его место пришла привычная нам материя. Однако помимо нее во Вселенной также существует которое обладает отрицательной энергией. Свойства этих двух сущностей противоположны. Так компенсируется энергия, исходящая от частиц, звезд, планет и другой материи. Эта взаимосвязь также объясняет, почему Вселенная до сих пор не превратилась в черную дыру.

Когда Большой взрыв только произошел, мир был слишком мал, чтобы в нем что-то могло коллапсировать. Теперь же, когда Вселенная расширилась, на отдельных ее участках появились локальные черные дыры. Их гравитационное поле поглощает все окружающее. Из него не может выбраться даже свет. Собственно из-за этого подобные дыры становятся черными.

Расширение Вселенной

Даже несмотря на теоретическое обоснование инфляционной теории, до сих пор непонятно, как выглядела Вселенная до Большого взрыва. Человеческое воображение не может представить себе этой картины. Дело в том, что инфляционное поле является нематериальным. Оно не поддается объяснению привычными законами физики.

Когда произошел Большой взрыв, инфляционное поле начало расширяться в темпе, который превысил скорость света. Согласно физическим показателям, во Вселенной нет ничего материального, что могло бы двигаться быстрее этого показателя. Свет распространяется по существующему миру с запредельными цифрами. Инфляционное поле же распространилось с еще большей скоростью, как раз в силу своей нематериальной природы.

Современное состояние Вселенной

Текущий период эволюции Вселенной как нельзя лучше подходит для существования жизни. Ученые затрудняются определить, сколько будет продолжаться этот временной отрезок. Но если кто и брался за такие расчеты, то получавшиеся цифры были никак не меньше сотен миллиардов лет. Для одной человеческой жизни подобный отрезок настолько велик, что даже в математическом исчислении его приходится записывать с помощью использования степеней. Настоящее изучено гораздо лучше, чем предыстория Вселенной. Что было до Большого взрыва, в любом случае останется только предметом теоретических изысканий и смелых расчетов.

В материальном мире даже время остается величиной относительной. Например, квазары (вид астрономических объектов), существующие на расстоянии 14 миллиардов световых лет от Земли, отстают от нашего привычного «сейчас» на те самые 14 миллиардов световых лет. Этот временной разрыв колоссален. Его сложно определить даже математически, не говоря уже о том, что отчетливо представить себе подобное с помощью человеческого воображения (даже самого пылкого) просто невозможно.

Современная наука может теоретически объяснить себе всю жизнь нашего материального мира, начиная с первых долей секунд его существования, когда только что произошел Большой взрыв. Полная история Вселенной дополняется до сих пор. Астрономы открывают новые удивительные факты с помощью модернизированного и улучшенного исследовательского оборудования (телескопов, лабораторий и т. д.).

Однако существуют и так и не понятые явления. Таким белым пятном, например, является и ее темная энергия. Сущность этой скрытой массы продолжает будоражить сознание самых образованных и передовых физиков современности. Кроме того, так и не возникло единой точки зрения о причинах того, почему во Вселенной частиц все-таки больше, чем античастиц. По этому поводу было сформулировано несколько фундаментальных теорий. Некоторые из этих моделей пользуются наибольшей популярностью, но ни одна из них пока не принята международным научным сообществом в качестве

В масштабе всеобщего знания и колоссальных открытий XX столетий эти пробелы кажутся совсем незначительными. Но история науки с завидной регулярностью показывает, что объяснение таких «малых» фактов и явлений становится основой для всего представления человечества о дисциплине в целом (в данном случае речь идет об астрономии). Поэтому будущим поколениям ученых, безусловно, будет чем заняться и что открывать в области познания природы Вселенной.

Зрелище ночного звездного неба, усыпанного звездами, завораживает любого человека, чья душа еще не обленилась и не зачерствела вконец. Таинственная глубина Вечности распахивается перед изумленным человеческим взором, вызывая раздумья об изначальном, о том, откуда все началось...

Большой взрыв и происхождение вселенной

Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной - так называемой теории большого взрыва . В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну "точку", имевшую необычайно высокую температуру, а затем эта "точка" взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь. При этом Расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.

Есть и другая теория происхождения Вселенной. Согласно ей, происхождение Вселенной, всего мироздания, жизни и человека есть разумный творческий акт, осуществленный Богом, творцом и вседержителем, природа которого непостижима человеческим разумом. "Убежденные" материалисты обычно склонны осмеивать эту теорию, но так как в нее в той или иной форме верит половина человечества, мы не имеем права обойти ее молчанием.

Объясняя происхождение Вселенной и человека с механистической позиций, трактуя Вселенную как продукт материи, чье развитие подчиняется объективным законам природы, сторонники рационализма, как правило, отрицают нефизические факторы, особенно тогда, когда речь идет о существовании некоего Всемирного или Космического разума, так как это "ненаучно". Научным же следует считать то, что можно описать с помощью математических формул.

Одна из самых больших проблем, стоящих перед сторонниками теории большого взрыва, как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически. Согласно базовым теориям большого взрыва , первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название "феномена".

Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема "феномена" обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о "феномене" говорят как о вещи, недопустимой с научной точки зрения. Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р. Эллис, профессор математики университета в Кейптауне, в своей книге "Длинная шкала структуры пространство-время" указывают: "Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад. Однако отправной пункт теории возникновения Вселенной - так называемый "феномен" - находится за гранью известных законов физики". Тогда приходится признать, что во имя обоснования "феномена", этого краеугольного камня теории большого взрыва , необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.

"Феномен", как и любой другой отправной пункт "начала Вселенной", включающий в себя что-то, что невозможно описать научными, категориями, остается открытым вопросом. Однако возникает следующий вопрос: откуда появился сам "феномен", как он образовался? Ведь проблема "феномена" - это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами - если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности "феномена", то все равно останется вопрос: как образовалась Вселенная?

В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию "пульсирующей Вселенной". По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о "начале мира". Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации. Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге "Первые три минуты" указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций. Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, "пульсирующая Вселенная" имеет конец, а значит, имеет и начало...

И снова мы упираемся в проблему начала. Дополнительные хлопоты создает общая теория относительности Эйнштейна. Главной проблемой этой теории является то, что она не рассматривает время таким, каким мы его знаем. В эйнштейновской теории время и пространство объединены в четырехмерный пространственновременной континуум. Для него невозможно описать предмет, как занимающий определенное место в определенное время. Релятивистское описание предмета определяет его пространственное и временное положение как единое целое, растянутое от начало до конца существования предмета. Например, человек оказался бы изображенным как единое целое на всем пути своего развития от эмбриона до трупа. Такие конструкции носят название "пространственно-временных червей".

Но если мы "пространственно-временные черви", значит, мы являемся только заурядной формой материи. То, что человек разумное существо, при этом не учитывается. Определяя человека как "червя", теория относительности не принимает во внимание наше индивидуальное восприятие прошлого, настоящего и будущего, а рассматривает ряд отдельных случаев, объединенных пространственно-временным существованием. В действительности-то мы знаем, что мы существуем лишь в сегодняшнем дне, в то время как прошлое существует только в нашей памяти, а будущее - в нашем воображении. А это означает, что все концепции "начала Вселенной", построенные на теории относительности, не учитывают восприятие времени человеческим сознанием. Впрочем, само время еще мало изучено.

Анализируя альтернативные, немеханистические концепции возникновения Вселенной, Джон Гриббин в книге "Белые боги" подчеркивает, что в последние годы имеет место "серия взлетов творческого воображения мыслителей, которых сегодня мы уже не называем ни пророками, ни ясновидящими". Одним из таких творческих взлетов стала концепция "белых дыр", или квазаров, которые в потоке первичного вещества "выплевывают" из себя целые галактики. Другая обсуждающаяся в космологии гипотеза - идея так называемых пространственно-временных туннелей, так называемых "космических каналов". Эта мысль впервые была высказана в 1962 году физиком Джоном Уилером в книге "Геометродинамика", в которой исследователь сформулировал возможность надпространственных, необыкновенно быстрых межгалактических путешествий, которые при движении со скоростью света заняли бы миллионы лет. Некоторые версии концепции "надпространственных каналов" рассматривают возможность перемещения с их помощью в прошлое и будущее, а также в другие вселенные и измерения.

Бог и большой взрыв

Как видим, теория "большого взрыва" подвергается атакам со всех сторон, что вызывает законное неудовольствие у ученых, стоящих на ортодоксальных позициях. Одновременно в научных публикациях все чаще можно натолкнуться на косвенное или прямое признание существования надприродных сил, неподвластных науке. Возрастает число ученых, в том числе крупных математиков и физиков-теоретиков, которые убеждены в существовании Бога или высшего Разума. К числу таких ученых принадлежат, например, лауреаты Нобелевской премии Джордж Уэйлд и Уильям Маккри. Известный советский ученый, доктор наук, физик и математик О.В. Тупицын первым из отечественных ученых сумел математически доказать, что Вселенная, а вместе с ней и человек, сотворены Разумом, неизмеримо более могущественным, чем наш, - то есть Богом.

Нельзя спорить, пишет в своих "Тетрадях" О. В. Тупицын, что жизнь, в том числе разумная, - это всегда строго упорядоченный процесс. В основе жизни лежит порядок, система законов, по которым движется материя. Смерть - это, напротив, беспорядок, хаос и, как следствие, разрушение материи. Без воздействия извне, причем воздействия разумного и целенаправленного, никакой порядок невозможен - тут же начинается процесс разрушения, означающий смерть. Без понимания этого, а значит, без признания идеи Бога науке никогда не суждено открыть первопричину Вселенной, возникшей из праматерии в результате строго упорядоченных процессов или, как называет их физика, фундаментальных законов. Фундаментальных - это значит основных и неизменных, без которых существование мира было бы вообще невозможным.

Однако современному человеку, особенно воспитанному на атеизме, очень трудно включить Бога в систему своего мировоззрения - в силу неразвитой интуиции и полного отсутствия понятия о Боге. Что ж, тогда, приходится верить в большой взрыв ...