Теорема пьера ферма решение. Доказательство теоремы Ферма — элементарное, простое, понятное

1

Ивлиев Ю.А.

Статья посвящена описанию принципиальной математической ошибки, допущенной в процессе доказательства Великой теоремы Ферма в конце ХХ века. Обнаруженная ошибка не только искажает истинный смысл теоремы, но и препятствует развитию нового аксиоматического подхода к исследованию степеней чисел и натурального ряда чисел.

В 1995 году вышла статья , по размеру похожая на книгу и сообщавшая о доказательстве знаменитой Великой (Последней) теоремы Ферма (ВТФ) (об истории теоремы и попытках ее доказать см., например, ). После этого события появилось множество научных статей и научно-популярных книг, пропагандирующих это доказательство, однако ни в одном из этих трудов не была вскрыта принципиальная математическая ошибка в нем, вкравшаяся даже не по вине автора , а по какому-то странному оптимизму, охватившему умы математиков, занимавшихся указанной проблемой и смежными с ней вопросами. Психологические аспекты этого феномена были исследованы в . Здесь же дается детальный анализ произошедшей оплошности, которая носит не частный характер, а является следствием неправильного понимания свойств степеней целых чисел. Как показано в , проблема Ферма коренится в новом аксиоматическом подходе к изучению этих свойств, который до сих пор в современной науке не применялся. Но на его пути встало ошибочное доказательство , предоставившее специалистам по теории чисел ложные ориентиры и уводящее исследователей проблемы Ферма в сторону от ее прямого и адекватного решения. Данная работа посвящена устранению этого препятствия.

1. Анатомия ошибки, допущенной в ходе доказательства ВТФ

В процессе очень длинных и утомительных рассуждений первоначальное утверждение Ферма было переформулировано в терминах сопоставления диофантова уравнения p -ой степени с эллиптическими кривыми 3-его порядка (см. Теоремы 0.4 и 0.5 в ). Такое сопоставление заставило авторов фактически коллективного доказательства в объявить о том, что их метод и рассуждения приводят к окончательному решению проблемы Ферма (напомним, что ВТФ не имела признанных доказательств для случая произвольных целых степеней целых чисел вплоть до 90-х годов прошлого столетия). Целью данного рассмотрения является установление математической некорректности указанного выше сопоставления и, как результат проведенного анализа, нахождение принципиальной ошибки в доказательстве, предъявленном в .

а) Где и в чем ошибка?

Итак, будем идти по тексту , где на с.448 говорится, что после «остроумной идеи» Г.Фрея (G.Frey) открылась возможность доказательства ВТФ. В 1984 году Г.Фрей предположил и

К.Рибет (K.Ribet) позднее доказал, что предполагаемая эллиптическая кривая, представляющая гипотетическое целое решение уравнения Ферма,

y 2 = x(x + u p)(x - v p) (1)

не может быть модулярной. Однако А.Уайлс (A.Wiles) и Р.Тейлор (R.Taylor) доказали, что всякая полустабильная эллиптическая кривая, определенная над полем рациональных чисел, является модулярной. Отсюда следовал вывод о невозможности целочисленных решений уравнения Ферма и, следовательно, о справедливости утверждения Ферма, которое в обозначениях А.Уайлса записывалось как Теорема 0.5: пусть имеется равенство

u p + v p + w p = 0 (2)

где u, v , w - рациональные числа, целый показатель p ≥ 3; тогда (2) выполняется, только если uvw = 0 .

Теперь, по-видимому, следует вернуться назад и критически осмыслить, почему кривая (1) была априори воспринята как эллиптическая и какова ее реальная связь с уравнением Ферма. Предвидя этот вопрос, А.Уайлс ссылается на работу И.Эллегуарша (Y.Hellegouarch) , в которой тот нашел способ сопоставить уравнению Ферма (предположительно решаемому в целых числах) гипотетическую кривую 3-его порядка. В отличие от Г.Фрея И.Эллегуарш не связывал свою кривую с модулярными формами, однако его метод получения уравнения (1) был использован для дальнейшего продвижения доказательства А.Уайлса.

Остановимся подробнее на работе . Свои рассуждения автор проводит в терминах проективной геометрии. Упрощая некоторые его обозначения и приводя их в соответствие с , находим, что абелевой кривой

Y 2 = X(X - β p)(X + γ p) (3)

сопоставляется диофантово уравнение

x p + y p + z p = 0 (4)

где x , y, z - неизвестные целые числа, p - целый показатель из (2), а решения диофантова уравнения (4) α p , β p , γ p используются для записи абелевой кривой (3).

Теперь, чтобы удостовериться в том, что это кривая эллиптическая 3-его порядка, необходимо рассмотреть переменные X и Y в (3) на евклидовой плоскости. Для этого воспользуемся известным правилом арифметики эллиптических кривых: если имеются две рациональные точки на кубической алгебраической кривой и прямая, проходящая через эти точки, пересекает эту кривую еще в одной точке, то последняя также является рациональной точкой. Гипотетическое уравнение (4) формально представляет собой закон сложения точек на прямой. Если сделать замену переменных x p = A, y p = B, z p = C и направить полученную таким образом прямую по оси X в (3), то она пересечет кривую 3-ей степени в трех точках: (X = 0, Y = 0), (X = β p , Y = 0), (X = - γ p , Y = 0), что и отражено в записи абелевой кривой (3) и в аналогичной записи (1). Однако, является ли кривая (3) или (1) на самом деле эллиптической? Очевидно, что нет, потому что отрезки евклидовой прямой при сложении точек на ней взяты в нелинейном масштабе.

Возвращаясь к линейным координатным системам евклидова пространства, получаем вместо (1) и (3) формулы, весьма отличные от формул для эллиптических кривых. Например, (1) может быть следующей формой:

η 2p = ξ p (ξ p + u p)(ξ p - v p) (5)

где ξ p = x, η p = y, и апелляция к (1) в таком случае для вывода ВТФ представляется неправомерной. Несмотря на то, что (1) удовлетворяет некоторым критериям класса эллиптических кривых, все же самому главному критерию быть уравнением 3-ей степени в линейной системе координат оно не удовлетворяет.

б) Классификация ошибки

Итак, еще раз вернемся к началу рассмотрения и проследим, как делается в вывод об истинности ВТФ. Во-первых, предполагается, что существует некое решение уравнения Ферма в положительных целых числах. Во-вторых, это решение произвольно вставляется в алгебраическую форму известного вида (плоскую кривую 3-ей степени) в предположении, что полученные таким образом эллиптические кривые существуют (второе неподтвержденное предположение). В-третьих, поскольку другими методами доказывается, что построенная конкретная кривая немодулярна, то, значит, она не существует. Отсюда следует заключение: целочисленного решения уравнения Ферма нет и, следовательно, ВТФ верна.

В этих рассуждениях есть одно слабое звено, которое после детальной проверки оказывается ошибкой. Эта ошибка совершается на втором этапе процесса доказательства, когда предполагается, что гипотетическое решение уравнения Ферма является одновременно и решением алгебраического уравнения 3-ей степени, описывающего эллиптическую кривую известного вида. Само по себе такое предположение было бы оправданным, если бы указанная кривая действительно являлась эллиптической. Однако, как видно из п.1а), эта кривая представлена в нелинейных координатах, что делает ее «иллюзорной», т.е. реально не существующей в линейном топологическом пространстве.

Теперь надо четко классифицировать найденную ошибку. Она заключается в том, что в качестве аргумента доказательства приводится то, что нужно доказать. В классической логике эта ошибка известна как «порочный круг». В данном случае целочисленное решение уравнения Ферма сопоставляется (по-видимому, предположительно однозначно) с фиктивной, несуществующей эллиптической кривой, а потом весь пафос дальнейших рассуждений уходит на то, чтобы доказать, что конкретная эллиптическая кривая такого вида, полученная из гипотетических решений уравнения Ферма, не существует.

Как же так получилось, что в серьезной математической работе была пропущена столь элементарная ошибка? Наверно, это произошло из-за того, что ранее в математике не изучались «иллюзорные» геометрические фигуры указанного вида. Действительно, кого могла заинтересовать, например, фиктивная окружность, полученная из уравнения Ферма заменой переменных x n/2 = A, y n/2 = B, z n/2 = C ? Ведь ее уравнение C 2 = A 2 + B 2 не имеет целочисленных решений при целых x, y, z и n ≥ 3 . В нелинейных координатных осях X и Y такая окружность описывалась бы уравнением, по внешнему виду очень похожему на стандартную форму:

Y 2 = - (X - A)(X + B),

где A и B уже не переменные, а конкретные числа, определяемые указанной выше заменой. Но если числам A и B придать первоначальный вид, заключающийся в их степенном характере, то сразу же бросается в глаза неоднородность обозначений в сомножителях правой части уравнения. Этот признак помогает отличить иллюзию от действительности и перейти от нелинейных координат к линейным. С другой стороны, если рассматривать числа как операторы при их сравнении с переменными, как например в (1), то те и другие должны быть однородными величинами, т.е. должны иметь одинаковые степени.

Такое понимание степеней чисел как операторов позволяет также увидеть, что сопоставление уравнения Ферма иллюзорной эллиптической кривой не является однозначным. Возьмем, к примеру, один из сомножителей в правой части (5) и разложим его на p линейных сомножителей, введя такое комплексное число r, что r p = 1 (см. например ):

ξ p + u p = (ξ + u )(ξ + ru )(ξ + r 2 u )...(ξ + r p-1 u ) (6)

Тогда форму (5) можно представить в виде разложения на простые сомножители комплексных чисел по типу алгебраического тождества (6), однако единственность такого разложения в общем случае стоит под вопросом, что и было в свое время показано Куммером .

2. Выводы

Из предыдущего анализа следует, что так называемая арифметика эллиптических кривых не способна пролить свет на то, где надо искать доказательство ВТФ. После работы утверждение Ферма, кстати, взятое эпиграфом к этой статье, стало восприниматься, как историческая шутка или розыгрыш. Однако на деле оказывается, что пошутил не Ферма, а специалисты, собравшиеся на математический симпозиум в Обервольфахе в Германии в 1984 году, на котором Г.Фрей озвучил свою остроумную идею. Последствия такого неосторожного заявления привели математику в целом на грань утраты ею общественного доверия, что подробно описано в и что с необходимостью ставит перед наукой вопрос об ответственности научных учреждений перед обществом. Сопоставление уравнения Ферма кривой Фрея (1) является «замкóм» всего доказательства Уайлса относительно теоремы Ферма, и, если нет соответствия между кривой Ферма и модулярными эллиптическими кривыми, то значит нет и доказательства.

В последнее время появляются различные интернет-сообщения о том, будто бы некоторые видные математики, наконец-то, разобрались с доказательством Уайлса теоремы Ферма, придумав ему оправдание в виде «минимального» пересчета целых точек в евклидовом пространстве. Однако никакие новшества не в силах отменить классические результаты, уже добытые человечеством в математике, в частности, тот факт, что хотя любое порядковое число и совпадает с его количественным аналогом, оно не может быть ему заменой в операциях сравнения чисел между собой, а отсюда с неизбежностью следует вывод, что кривая Фрея (1) не является эллиптической изначально, т.е. не является ею по определению.

СПИСОК ЛИТЕРАТУРЫ:

  1. Ивлиев Ю.А. Реконструкция нативного доказательства Великой теоремы Ферма - Объединенный научный журнал (раздел «Математика»). Апрель 2006 № 7 (167) с.3-9, см. также Працi Луганського вiддiлення Мiжнародноϊ Академiϊ iнформатизацiϊ. Мiнiстерство освiти та науки Украϊни. Схiдноукраϊнський нацiональний унiверситет iм. В.Даля. 2006 № 2 (13) с.19-25.
  2. Ивлиев Ю.А. Величайшая научная афера ХХ века: «доказательство» Последней теоремы Ферма - Естественные и технические науки (раздел «История и методология математики»). Август 2007 № 4 (30) с.34-48.
  3. Эдвардс Г. (Edwards H.M.) Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. Пер. с англ. под ред. Б.Ф.Скубенко. М.: Мир 1980, 484 с.
  4. Hellegouarch Y. Points d´ordre 2p h sur les courbes elliptiques - Acta Arithmetica. 1975 XXVI p.253-263.
  5. Wiles A. Modular elliptic curves and Fermat´s Last Theorem - Annals of Mathematics. May 1995 v.141 Second series № 3 p.443-551.

Библиографическая ссылка

Ивлиев Ю.А. ОШИБОЧНОЕ ДОКАЗАТЕЛЬСТВО УАЙЛСА ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА // Фундаментальные исследования. – 2008. – № 3. – С. 13-16;
URL: http://fundamental-research.ru/ru/article/view?id=2763 (дата обращения: 25.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Пьер Ферма утверждал, что:

невозможно разложить куб на два куба или биквадрат на два биквадрата и вообще невозможно разложить какую-либо степень, большую чем два, на две степени с таким же показателем.

Как же подойти к доказательству этого утверждения Ферма?

(картинка для привлечения внимания)

Представим себе, что мы нашли или построили прямоугольный треугольник со следующими сторонами: катеты - , и гипотенузой где (p, q, k, n) - числа натуральные. Тогда по теореме Пифагора получим или . Таким образом, если мы найдем или построим такой треугольник, то мы опровергнем Ферма. Если же мы докажем, что такой треугольник не существует, то мы докажем теорему.

Так как в утверждении речь идёт о натуральных числах, то найдем, чему равняется разность квадратов двух нечетных натуральных чисел. Т.е. решим уравнение . Для этого построим прямоугольные треугольники, гипотенуза которых равна , а катет равен , где и (a > b) . Тогда по теореме Пифагора можно вычислить второй катет по формуле (1) , или (2) . Мы получили, что стороны этих треугольников равны и . Таким образом, мы можем перебрать все пары чисел a и b из натурального множества (назовем эти числа “генераторами” данного тождества) и получить все возможные треугольники с заданными свойствами , . Докажем необходимость данного решения. Перепишем (1) в виде . Так как Z и Y нечетные числа, значит можно написать (Z - Y) = 2b и (Z + Y)=2a. Решая их относительно Z и Y, получим Z = (a + b) и Y = (a - b). Тогда можно записать, что X = 4ab и, подставляя эти значения в (1) , получим .

Примечание
Чтобы избежать получения подобных треугольников, и, учитывая, что Z и Y - нечетные числа по условию, числа a и b должны быть взаимно простыми и разной четности. Далее будем считать, что четным является число a . Для того, чтобы упорядочить распределение прямоугольных треугольников в множестве натуральных чисел N , поступим следующим образом: из этого множества вычтем все числа, которые являются четными степенями натуральных чисел. Обозначим это множество , где n - натуральное число. Затем из оставшихся натуральных чисел вычтем все числа, которые являются нечетными (≥3) степенями натуральных чисел и обозначим множество этих чисел как . Оставшиеся натуральные числа составят множество, числа которого есть натуральные числа в первой степени. Обозначим это множество . Очевидно, соединение этих 3-х множеств есть множество натуральных чисел, или . Множество представим как ряд = {1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17,………}. Представим множества и в виде рядов. Тогда множество будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка будет состоять из чисел ряда , возведенных в степень 2n , а n - есть номер строки. Так первая строка состоит из квадратов всех чисел ряда , вторая строка состоит из 4-х степеней этих чисел и т.д. Рассмотрим множество , которое будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка которой будет состоять из чисел ряда , возведенных в степень 2n+1 . (n - есть номер строки). Так первая строка этой матрицы состоит из кубов чисел ряда , вторая строка состоит из чисел ряда в пятой степени и т.д. Рассмотрим множество . Т.к. , то примем тот же алгоритм построения треугольников (см. выше). Найдем «генераторы» тождества, Это будут числа , где , составим тождество: (3) , мы получили множество прямоугольных треугольников с целочисленными сторонами. Здесь - гипотенуза, - катет и - второй катет. Для опровержения утверждения Ферма нужно, чтобы стороны X, Y, Z искомого треугольника равнялись (4) . Где (p, q, k, n) - натуральные числа. По теореме Пифагора будем иметь или и утверждение Ферма будет опровергнуто. Из тождества видно, что . Рассмотрим последнее равенство , в этом равенстве «p » ни при каких значениях «a и b » не будет натуральным числом, если . Это означает, что в рассмотренном множестве треугольников не существует ни одного треугольника с искомыми сторонами (4) .
Теперь рассмотрим множество . Обозначим (2n+1) как «m », тогда во множестве получим прямоугольные треугольники, описываемые тождеством (6) . Если мы сможем построить прямоугольный треугольник X, Y, Z со сторонами (7) , где , то мы опровергнем утверждение Ферма, т.к. по теореме Пифагора и (p, q и k) - натуральные числа. Надо, чтобы . Рассматривая последнее равенство заметим, что «p » не может быть натуральным числом ни при каких значениях «a и b », , если . Значит и в этом множестве треугольников не существует ни одного треугольника с искомыми сторонами (7) .

Однако из вышесказанного видно, что все доказательство сводится к анализу числа , где «» при любых натуральных «a и b » не будет натуральным числом в степени «m/2 ». Или же (8) при тех же условиях не будет натуральным числом в степени «m». Из доказательства видно, что «генераторами» тождества (6) являются числа «» из ряда Но, анализируя (8) , можно подставить вместо «» число . Так как есть четное число, (см.Примечание), то - натуральное число. После подстановки его в (8) получим , то есть натуральные числа в степени «m». Совершив вышеуказанную подстановку в тождество (6) , и, обозначив через , получим следующее тождество: . Мы получили множество прямоугольных треугольников со сторонами . Если (k,q, p) - натуральные числа в нечетной степени, т.е. где r - любое нечетное число, а . Чтобы опровергнуть Ферма нужно, чтобы: В последнем равенстве при любых натуральных a и b , - числа натуральные, но первые два равенства невозможны, так как, если «m и r » любые нечетные числа, то - иррациональные числа, а числа в скобках - числа натуральные. Если же (k,q, p) - натуральные числа в четной степени, т.е. , то мы получим следующие равенства (5) . В данном варианте последнее равенство невозможно, т.к. извлекая корень m степени из обеих частей равенства получим , т.е. в скобках иррациональное число, а - натуральное. Это значит, что и в этом множестве не найдено «нужного» треугольника. А это значит, что для любых нечетных «m » утверждение Ферма верно, а значит, верно, для всех простых показателей «m ≥ 3».

Остается найти доказательство теоремы для четных показателей. Из (5) следует, что, если в каноническом разложении четного показателя степени есть нечетное простое число, то утверждение Ферма для этой степени верно. Очевидно, что этому условию отвечают все четные числа, кроме числа «4 » и чисел кратных четырем, т.е. 8, 16, 32, 64 … и т.д. В разложении этих чисел есть только простое число 2 . Поэтому вышеприведенное доказательство не дает ответа для этих степеней.

Значит остается доказать теорему для «n = 4 ». Можно предположить, что у Ферма было общее доказательство, но не полное. Может быть, поэтому он и не записал свое доказательство. И только через несколько лет, создав свой метод «бесконечного или неопределенного спуска», он доказал, что не существует прямоугольного треугольника с целочисленными сторонами, у которого площадь равнялась бы квадрату натурального числа. После этого доказательство теоремы для «n = 4 » не составило труда. Это доказательство Ферма записал. И теорема оказалась доказанной полностью.

Теги: теорема Ферма, краткое доказательство

Судя по популярности запроса "теорема Ферма - краткое доказательство", эта математическая проблема действительно многих интересует. Эта теорема была впервые высказана Пьером де Ферма в 1637 году на краю копии "Арифметики", где он утверждал, что у него было ее решение, оно было слишком велико для того, чтобы поместиться на краю.

Первое успешное доказательство было опубликовано в 1995 году - это было полное доказательство теоремы Ферма, осуществленное Эндрю Уайлсом. Оно было описано как «ошеломляющий прогресс», и привело Уайлса к получению премии Абеля в 2016 году. Будучи описанным относительно кратко, доказательство теоремы Ферма также доказало большую часть теоремы модульности и открыло новые подходы к многочисленным другим проблемам и эффективным методам подъема модульности. Эти свершения продвинули математику на 100 лет вперед. Доказательство малой теоремы Ферма сегодня не является чем-то из ряда вон выходящим.

Неразрешенная проблема стимулировала развитие алгебраической теории чисел в XIX веке и поиск доказательства теоремы модульности в XX веке. Это одна из самых заметных теорем в истории математики и до полного доказательства великой теоремы Ферма методом деления она была в Книге рекордов Гиннеса как «самая сложная математическая проблема», одной из особенностей которой является то, что она имеет наибольшее количество неудачных доказательств.

Историческая справка

Пифагорейское уравнение x 2 + y 2 = z 2 имеет бесконечное число положительных целочисленных решений для x, y и z. Эти решения известны как троицы Пифагора. Примерно в 1637 году Ферма написал на краю книги, что более общее уравнение a n + b n = c n не имеет решений в натуральных числах, если n является целым числом, большим чем 2. Хотя сам Ферма утверждал, что имеет решение своей задачи, он не оставил никаких подробностей о ее доказательстве. Элементарное доказательство теоремы Ферма, заявленное ее создателем, скорее было его хвастливой выдумкой. Книга великого французского математика была обнаружена спустя 30 лет после его смерти. Это уравнение, получившее название «Последняя теорема Ферма», в течение трех с половиной столетий оставалось нерешенным в математике.

Теорема в конечном итоге стала одной из самых заметных нерешенных проблем математики. Попытки доказать это вызвали существенное развитие теории чисел, и с течением времени последняя теорема Ферма получила известность как нерешенная проблема математики.

Краткая история доказательств

Если n = 4, что доказано самим Ферма, достаточно доказать теорему для индексов n, которые являются простыми числами. В течение следующих двух столетий (1637-1839) гипотеза была доказана только для простых чисел 3, 5 и 7, хотя Софи Жермен обновляла и доказывала подход, который имел отношение ко всему классу простых чисел. В середине 19 века Эрнст Куммер расширил это и доказал теорему для всех правильных простых чисел, в результате чего нерегулярные простые числа анализировались индивидуально. Основываясь на работе Куммера и, используя сложные компьютерные исследования, другие математики смогли расширить решение теоремы, имея цель охватить все основные показатели до четырех миллионов, но док-во для всех экспонентов по-прежнему было недоступным (это означает, что математики обычно считали решение теоремы невозможным, чрезвычайно сложным, или недостижимым с современными знаниями).

Работа Шимуры и Таниямы

В 1955 году японские математики Горо Шимура и Ютака Танияма подозревали, что существует связь между эллиптическими кривыми и модульными формами, двумя совершенно разными областями математики. Известная в то время, как гипотеза Танияма-Шимура-Вейля и (в конечном счете) как теорема модульности, она существовала сама по себе, без видимой связи с последней теоремой Ферма. Она сама по себе широко рассматривалась как важная математическая теорема, но при этом считалась (как и теорема Ферма) невозможной для доказательства. В то же время доказательство великой теоремы Ферма (методом деления и применения сложных математических формул) было осуществлено лишь полвека спустя.

В 1984 году Герхард Фрей заметил очевидную связь между этими двумя ранее не связанными и нерешенными проблемами. Полное подтверждение того, что две теоремы были тесно связаны, было опубликовано в 1986 году Кеном Рибетом, который основывался на частичном доказательстве Жана-Пьера Серра, который доказал все, кроме одной части, известной как «гипотеза эпсилона». Проще говоря, эти работы Фрея, Серра и Рибе показали, что если бы теорема о модульности могла быть доказана, по крайней мере, для полустабильного класса эллиптических кривых, то и доказательство последней теоремы Ферма также рано или поздно будет открыто. Любое решение, которое может противоречить последней теореме Ферма, может также использоваться, чтобы противоречить теореме модульности. Поэтому, если теорема о модульности оказалась истинной, то по определению не может существовать решение, противоречащее последней теореме Ферма, а значит она вскоре должна была быть доказана.

Хотя обе теоремы были сложными проблемами для математики, считающимися нерешаемыми, работа двух японцев стала первым предположением о том, как последняя теорема Ферма могла бы быть продолжена и доказана для всех чисел, а не только для некоторых. Важным для исследователей, выбравших тему исследования, был тот факт, что в отличие от последней теоремы Ферма, теорема модульности была основной активной областью исследований, для которой было разработано доказательство, а не только исторической странностью, поэтому время, затраченное на ее работу, могло быть оправдано с профессиональной точки зрения. Однако общее мнение заключалось в том, что решение гипотезы Таниямы-Шимуры оказалось нецелесообразным.

Великая теорема Ферма: доказательство Уайлса

Узнав, что Рибет доказал правильность теории Фрея, английский математик Эндрю Уайлс, с детства интересующийся последней теоремой Ферма и имеющий опыт работы с эллиптическими кривыми и смежными областями, решил попытаться доказать гипотезу Таниямы-Шимуры, как способ доказать последнюю теорему Ферма. В 1993 году, спустя шесть лет после объявления о своей цели, тайно работая над проблемой решения теоремы, Уайльсу удалось доказать смежную гипотезу, что, в свою очередь, помогло бы ему доказать последнюю теорему Ферма. Документ Уайлса был огромным по размеру и масштабу.

Недостаток был обнаружен в одной части его оригинальной статьи во время рецензирования и потребовал еще один год сотрудничества с Ричардом Тейлором, чтобы совместно решить теорему. В результате окончательное доказательство Уайлсом великой теоремы Ферма не заставило долго себя ждать. В 1995 году оно было опубликовано в куда меньшем масштабе, чем предыдущая математическая работа Уайлса, наглядно показывая, он не ошибся в своих предыдущих выводах о возможности доказательства теоремы. Достижение Уайлса было широко растиражировано в популярной прессе и популяризировано в книгах и телевизионных программах. Остальные части гипотезы Танияма-Шимура-Вейля, которые теперь были доказаны и известны как теорема о модульности, впоследствии были доказаны другими математиками, которые основывались на работе Уайлса в период между 1996 и 2001 годами. За свое достижение Уайлс был удостоен чести и получил многочисленные награды, в том числе, премию Абеля 2016 года.

Доказательство Уайлсом последней теоремы Ферма является частным случаем решения теоремы модульности для эллиптических кривых. Тем не менее, это самый известный случай столь масштабной математической операции. Вместе с решением теоремы Рибе, британский математик также получил доказательство последней теоремы Ферма. Последняя теорема Ферма и теорема о модульности почти повсеместно считались недоказуемыми современными математиками, но Эндрю Уайлс смог доказать всему научному миру, что даже ученые мужи способны заблуждаться.

Уайлс впервые объявил о своем открытии в среду 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». Однако в сентябре 1993 года было установлено, что его расчеты содержат ошибку. Год спустя, 19 сентября 1994 года, в том, что он назвал бы «самым важным моментом его трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить решение задачи до того уровня, когда оно сможет удовлетворить математическое сообщество.

Характеристика работы

Доказательство теоремы Ферма Эндрю Уайлсом использует многие методы из алгебраической геометрии и теории чисел и имеет много разветвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категория схем и теория Ивасавы, а также другие методы XX века, которые не были доступны Пьеру Ферма.

Две статьи, содержащие доказательства, составляют 129 страниц, которые писались в течение семи лет. Джон Коутс описал это открытие как одно из величайших достижений теории чисел, а Джон Конвей назвал его главным математическим свершением 20 века. Уайлс, чтобы доказать последнюю теорему Ферма путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых, разработал действенные методы подъема модульности и открыл новые подходы к многочисленным другим проблемам. За решение последней теоремы Ферма он был посвящен в рыцари и получил другие награды. Когда стало известно, что Уайлс выиграл премию Абеля, Норвежская академия наук описала его достижение как «восхитительное и элементарное доказательство последней теоремы Ферма».

Как это было

Одним из людей, анализировавших первоначальную рукопись Уайлса с решением теоремы, был Ник Кац. В ходе своего обзора он задал британцу ряд уточняющих вопросов, которые заставили Уайлса признать, что его работа явно содержит пробел. В одной критической части доказательства была допущена ошибка, которая давала оценку для порядка конкретной группы: система Эйлера, используемая для расширения метода Колывагина и Флача, была неполной. Ошибка, однако, не сделала его работу бесполезной - каждая часть работы Уайлса была очень значительной и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы и которые затрагивали лишь одну часть рукописи. Тем не менее в этой первоначальной работе, опубликованной в 1993 году, действительно не было доказательства великой теоремы Ферма.

Уайлс провел почти год, пытаясь заново найти решение теоремы - сперва в одиночку, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором, но все, казалось, было тщетным. К концу 1993 года распространились слухи, что при проверке доказательство Уайльса потерпело неудачу, но насколько серьезной была эта неудача, известно не было. Математики начали оказывать давление на Уайлса, чтобы он раскрыл детали своей работы, независимо от того, была она выполнена или нет, чтобы более широкое сообщество математиков могло исследовать и использовать все, чего ему удалось добиться. Вместо того, чтобы быстро исправить свою ошибку, Уайлс лишь обнаружил дополнительные сложные аспекты в доказательстве великой теоремы Ферма, и наконец-то осознал, насколько сложной она является.

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани того, чтобы бросить все и сдаться, и почти смирился с тем, что потерпел неудачу. Он готов был опубликовать свою неоконченную работу, чтобы другие могли на ней основываться и найти, в чем он ошибся. Английский математик решил дать себе последний шанс и в последний раз проанализировал теорему, чтобы попытаться понять основные причины, по которым его подход не работал, как вдруг внезапно осознал, что подход Колывагина-Флака не будет работать, пока он не подключит к процессу доказательства еще и теорию Ивасавы, заставив ее работать.

6 октября Уайлс попросил трех коллег (включая Фалтинса) рассмотреть его новую работу, а 24 октября 1994 г. он представил две рукописи - «Модульные эллиптические кривые и последняя теорема Ферма» и «Теоретические свойства кольца некоторых Гекке-алгебр», вторую из которых Уайлс написал совместно с Тейлором и доказал, что были выполнены определенные условия, необходимые для оправдания исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в качестве полнотекстового издания в журнале «Анналы математики» за май 1995 года. Новые расчеты Эндрю были широко проанализированы и научное сообщество в конце концов их признало. В этих работах была установлена теорема модульности для полустабильных эллиптических кривых - последний шаг к доказательству великой теоремы Ферма, спустя 358 лет после того, как она была создана.

История великой проблемы

Решение этой теоремы считалось самой большой проблемой в математике на протяжении многих столетий. В 1816 и в 1850 годах Французская академия наук предложила приз за общее доказательство великой теоремы Ферма. В 1857 году Академия присудила 3000 франков и золотую медаль Куммеру за исследования идеальных чисел, хотя он и не подавал заявку на приз. Еще одна премия была предложена ему в 1883 году Брюссельской академией.

Премия Вольфскеля

В 1908 году немецкий промышленник и математик-любитель Пауль Вольфскель завещал 100 000 золотых марок (большую сумму для того времени) Академии наук Геттингена, чтобы эти деньги стали призом за полное доказательство великой теоремы Ферма. 27 июня 1908 года Академия опубликовала девять правил награждения. Среди прочего, эти правила требовали опубликования доказательства в рецензируемом журнале. Приз должен был присуждаться лишь через два года после публикации. Срок конкурса должен был истечь 13 сентября 2007 - примерно через столетие после своего начала. 27 июня 1997 года Уайлс получил призовые деньги Вольфсхеля, а затем еще 50 000 долларов. В марте 2016 года он получил 600 000 евро от правительства Норвегии в рамках премии Абеля за «потрясающее доказательство последней теоремы Ферма с помощью гипотезы модульности для полустабильных эллиптических кривых, открывающей новую эру в теории чисел». Это был мировой триумф скромного англичанина.

До доказательства Уайлса теорема Ферма, как уже говорилось ранее, считалась абсолютно нерешаемой на протяжении целых столетий. Тысячи неверных доказательств в разное время были представлены комитету Вольфскеля, составив примерно 10 футов (3 метра) корреспонденции. Только в первый год существования премии (1907-1908) было подано 621 заявок с претензией на решение теоремы, хотя к 1970-м годам их количество уменьшилось примерно до 3-4 заявок в месяц. По мнению Ф. Шлихтинга, рецензента Вольфсхеля, большинство доказательств были основаны на элементарных методах, преподаваемых в школах, и часто представлялись «людьми с техническим образованием, но неудачной карьерой». По словам историка математики Говарда Эйвса, последняя теорема Ферма установила своеобразный рекорд - это теорема, набравшая наибольшее количество неверных доказательств.

Лавры Ферма достались японцам

Как уже говорилось ранее, примерно в 1955 году японские математики Горо Шимура и Ютака Танияма открыли возможную связь между двумя, по-видимому, совершенно разными отраслями математики - эллиптическими кривыми и модульными формами. Полученная в результате их исследований теорема модульности (в то время известная как гипотеза Таниямы-Шимуры) гласит, что каждая эллиптическая кривая является модулярной, что означает, что она может быть связана с уникальной модулярной формой.

Теория первоначально была отклонена как маловероятная или весьма спекулятивная, но была воспринята более серьезно, когда теоретик чисел Андре Вейль нашел доказательства, подтверждающие выводы японцев. В результате гипотеза часто называлась гипотезой Таниямы-Шимуры-Вейля. Она стала частью программы Langlands, представляющей собой список важных гипотез, требующих доказательства в будущем.

Даже после серьезного внимания, гипотеза была признана современными математиками как чрезвычайно трудная или, возможно, недоступная для доказательства. Теперь именно эта теорема ждет своего Эндрю Уайлса, который смог бы удивить весь мир ее решением.

Теорема Ферма: доказательство Перельмана

Не смотря на расхожий миф, российский математик Григорий Перельман, при всей своей гениальности, не имеет никакого отношения к теореме Ферма. Что, впрочем, никак не умаляет его многочисленных заслуг перед научным сообществом.

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=...0, 1х2=...2, 2х2=...4, 3х2=...6, 4х2=...1, 5х2=...3, 6х2=...5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000...001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Число U нулю не равно – иначе С=А+В и A^n<(А+В)^n-B^n, т.е. равенство Ферма является неравенством.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А", а", Р" чисел А, а, Р оканчиваются на цифру 1.

Ну а дальше начинается милая и увлекательная операция, называемая в преферансе «мельницей»: вводя в рассмотрение последующие цифры а"", а""" и так далее числа а, мы исключительно «легко» вычисляем, что все они также равны нулю! Слово «легко» я взял в кавычки, ибо ключ к этому «легко» человечество не могло найти в течение 350 лет! А ключик действительно оказался неожиданно и ошарашивающе примитивным: число Р нужно представить в виде P=q^(n-1)+Qn^(k+2). На второй член в этой сумме обращить внимание не стоит – ведь в дальнейшем доказательстве мы все цифры после (k+2)-й в числах отбросили (и это кардинально облегчает анализ)! Так что после отбрасывания головных частей чисел равенство Ферма принимает вид: ...1=аq^(n-1), где а и q – не числа, а всего лишь окончания чисел а и q! (Новые обозначения не ввожу, так это затрудняет чтение.)

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

Итак, введем в расмотрение цифру а"" (в числе а=а""n+1) и с ее помощью вычислим цифру q"" (в числе q=q""n+1):
...01=(а""n+1)(q""n+1)^(n-1), или...01=(а""n+1)[(n-q"")n+1], откуда q""=a"".

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а""n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а""n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а""n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а"". Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а""=0!!!

Тем самым мы завершили цикл: введя а"", мы нашли, что и q""=а"", а в заключение и а""=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА!!!

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают...

Удобочитаемый текст полного доказательства расположен здесь:

Рецензии

Здравствуйте, Виктор. Мне понравилось Ваше резюме. "Не позволить умереть раньше смерти" - здорово, конечно, звучит. От встречи на Прозе с теоремой Ферма, честно говоря, обалдела! Разве ей здесь место? Есть научные, научно-популярные и чайниковые сайты. А в остальном, спасибо за Вашу литературную работу.
С уважением, Аня.

Уважаемая Аня, несмотря на довольно жесткую цензуру, Проза позволяет писать ОБО ВСЕМ. С теоремой Ферма положение таково: крупные математические форумы к ферматистам относятся косо, с хамством и в целом третируют, как могут. Однако на мелких российских, английских и французских форумах я последний вариант доказательства представил. Никаких контрдоводов никто пока не выдвинул, да и, уверен, не выдвинет (доказательство проверено весьма тщательно). В субботу опубликую философскую заметку о теореме.
На прозе почти нет хамов, и если с ними не якшаться, то довольно скоро они отлипают.
На Прозе представлены почти все мои работы, поэтому и доказательство также поместил сюда.
До скорого,